برآورد بارش به کمک شبکه عصبی مصنوعی با داده های هواشناسی غیربارشی در سه منطقه شیراز، مشهد و کرمان
Authors
abstract
عنصر بارش ماهیت آشوبناکی و تصادفی داشته و از این نظر دارای تغییرات ساختاری در زمانهای مختلف است. در این راستا بهدلیل عدم قطعیتهایی که وجود دارد، نوسانهای زیادی در مقدار بارش ایجاد میشود که پیشبینی این کمیت مهم را با مشکل مواجه نموده است. در این مقاله با تکنیک مقیاسبندی مجدد (r/s) و محاسبه نمای هرست (h) پیشبینیپذیری بارش در سه منطقه شیراز، کرمان و مشهد انجام شد. نمای هرست نشان داد که پارامتر بارش قابلیت پیشبینیپذیری را دارد، زیرا h از 5/0 بزرگتر بوده و بمراتب بهمقدار 1 نزدیکتر است. بهطوریکه نمای هرست از حداقل 8/0 در ایستگاه مشهد تا حداکثر 92/0 در ایستگاه شیراز در نوسان بود. به منظور پیشبینی بارش از شبکههای عصبی مصنوعی استفاده شد. نوع پارامترهای ورودی براساس آزمون همبستگی پیرسون از بین دادههای غیربارشی، ترکیبی از دادههای دمایی و رطوبتی بودند. تعداد پارامترهای ورودی، تعداد لایههای میانی و سایر اطلاعات مربوط به شبکه عصبی مصنوعی به صورت تصادفی انتخاب و پیشنهاد شدند. در مجموع از شبکههای عصبی پرسپترون چند لایه برای برآورد بارش استفاده شد. مقایسه عملکرد شبکههای عصبی، نشان داد که استفاده از 3 و 4 پارامتر هواشناسی، بهترین رتبه برآوردگری را داشتهاند. آرایشهای پیشنهادی برای ایستگاه شیراز، 1-21-21-3، کرمان 1-25-25-3 و مشهد 1-19-19-4 دارای ضریب همبستگی بیش از 91 درصد شد. اعتبارسـنجی مدلهای بارش نشان داد که شـبکههای طراحی شـده برای پارامتر بارش در ایستگاههای مشهد، شیراز و کرمان به ترتیب با خطای 4، 11 و 14 درصد، دارای بهترین عملکرد بودهاند. در مجموع نتایج نشان میدهند که استفاده از روش شبکه عصبی با درنظر گرفتن اطلاعات دمایی و رطوبتی، نتایج مناسبی برای توصیف فرآیند و ترکیب آنها در پیشبینی، بهدست میدهند.
similar resources
برآورد بارش به کمک شبکه عصبی مصنوعی با داده¬های هواشناسی غیربارشی در سه منطقه شیراز، مشهد و کرمان
عنصر بارش ماهیت آشوبناکی و تصادفی داشته و از این نظر دارای تغییرات ساختاری در زمانهای مختلف است. در این راستا بهدلیل عدم قطعیتهایی که وجود دارد، نوسانهای زیادی در مقدار بارش ایجاد میشود که پیشبینی این کمیت مهم را با مشکل مواجه نموده است. در این مقاله با تکنیک مقیاسبندی مجدد (R/S) و محاسبه نمای هرست (H) پیشبینیپذیری بارش در سه منطقه شیراز، کرمان و مشهد انجام شد. نمای هرست نشان داد که پا...
full textبرآورد بارش به کمک شبکه عصبی مصنوعی با داده¬های هواشناسی غیربارشی در سه منطقه شیراز، مشهد و کرمان
عنصر بارش ماهیت آشوبناکی و تصادفی داشته و از این نظر دارای تغییرات ساختاری در زمانهای مختلف است. در این راستا بهدلیل عدم قطعیتهایی که وجود دارد، نوسانهای زیادی در مقدار بارش ایجاد میشود که پیشبینی این کمیت مهم را با مشکل مواجه نموده است. در این مقاله با تکنیک مقیاسبندی مجدد (r/s) و محاسبه نمای هرست (h) پیشبینیپذیری بارش در سه منطقه شیراز، کرمان و مشهد انجام شد. نمای هرست نشان داد که پا...
full textکاربرد شبکه عصبی مصنوعی در پیش بینی تبخیر-تعرق با حداقل داده های هواشناسی
برآورد دقیق تبخیر- تعرق در اعمال مدیریت بهینۀ منابع آب، ضروری است. تبخیر - تعرق مؤلفه مهمی در توازن آب در مناطق مختلف به شمار میرود. مهندسین آب با علم به اینکه چه مقدار از آب آبیاری به مصرف محصول میرسد، قادر به محاسبه مهمترین جز آب در سیکل هیدرولوژیک یعنی تبخیر - تعرق خواهند بود. در مطالعه حاضر تبخیر– تعرق روزانه دشت ارومیه با استفاده از دادههای هواشناسی طی دوره آماری 1390 – 1363 به روش فائو...
full textمدل شبکه عصبی مصنوعی تبخیر ماهانه از تشت با استفاده از داده های هواشناسی- مطالعه موردی منطقه حاشیه دریای خزر
تبخیر یکی از مؤلفههای اصلی چرخه آب در طبیعت بوده و تعیین دقیق آن برای بسیاری مطالعات مثل بیلان آبی حوزه، طرح ریزی و مدیریت منابع آب حائز اهمیت است. تبخیر به دلیل اثرات متقابل عوامل متعدد اقلیمی، پدیده پیچیده و غیر خطی است و لذا برای تخمین آن باید از مدلهای پیشرفته استفاده کرد. در این تحقیق، هشت نوع ترکیب پارامترهای هواشناسی بعنوان دادههای ورودی برای برآورد تبخیر از تشت با استفاده از شبکهها...
full textبررسی کارایی شبکه عصبی مصنوعی در برآورد بار معلق رودخانه با استفاده از داده های دستهبندیشده
بار رسوب جریان، شاخص مفیدی در پیشبینی فرسایش خاک در حوزههای آبخیز است؛ بنابراین تدوین مدلی برای برآورد بار رسوب میتواند در مدیریت و اجرای پروژههای آبخیزداری و مهندسی رودخانه مفید باشد. در این پژوهش روش دستهبندی دادهها بهعنوان راهکاری برای افزایش دقت شبکه عصبی مصنوعی در تدوین مدل برآورد رسوب معلق بررسی شد. بدین منظور، میزان آورد رسوبات معلق رودخانههای خلیفهترخان و چهلگزی در حوضۀ قشلاق...
full textMy Resources
Save resource for easier access later
Journal title:
جغرافیا و برنامه ریزیجلد ۱۷، شماره ۴۳، صفحات ۲۱-۴۰
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023